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(b) On this path y = 22, so
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(¢) On this path z = t* and y = 12, so
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4.4 »» (a) As in Problem 3.25, conservation of angular momentum implies that mriw =
mr 2w, , 80 w = (ry/r)%w,.

(b) The tension force, which I must supply, is what keeps the particle in its circular path
with centripetal acceleration a, = —w*r. (This is where we must assume that I pull the
string slowly — otherwise, a, = i — w?®r.) Thus the force which I exert is

s 1% )
F(r) =mwr=m [(E) wc.] r =mwlr? l«,

r

where T used the result of part (a) for the second equality. The work I do is (Remember the
distance I pull the string in any small displacement is —dr.)

r . rdl" ]. - 1 I
- _— R 2 . o ==
W = ./; F(r')(—dr') = —mw, r;.[u " Emu.n!c;‘ (;—? - .I..nz) :

(€) The particle’s KE is T = 3mv® = ymr®w?. Thus, with the result of part (a) for w,

Lopsid came Lo gfnd 5
AT = —m(r*w® —rfw?’) = -mw | = — 1,
2 2 r?

which is the same as the work done in part (b), as it has to be,



4.8 »» We'll measure the puck’s position by the angle # it subtends at the sphere’s center
O (measured down from the top). The puck’'s PE (defined as zero at the level of O) is
U(#) = mgRcos@, and its total energy is & = U(0) = mgR. By conservation of energy,

T =imv* = E - U =mgR(1 — cosf). (i)
As long as the puck remains in contact with the sphere, the radial component of Newton's
second law reads N — mgcos @ = —mv?/R, where N denotes the normal force of the sphere

on the puck. Substituting from Eq (i) for mv? we find
N =mg(3cosd — 2).

As long as N is positive the puck remains on the sphere. Since the sphere cannot exert a
negative normal force, once the predicted value of N becomes negative, the puck must have
left the sphere. Therefore it leaves the sphere when N = 0 or # = arceos(2/3) = 48.2° and
the height below the top is R/3.

412+ (a) Vf=%2r+23:2 (b) Vf=ky. (c) Vf=F (d) Vf=—¢/r

4.18 #+ (a) According to (4.33), the change in f(r) resulting from any small displacement
dr is df = Vf-dr. If, in particular, we consider any infinitesimal displacement dr in a surface
of constant f, then df will be zero. This implies that Vf.dr = 0, that is, Vf is perpendicular
to the surface of constant f.

(b) Consider a displacement dr = eu with fixed magnitude ¢ but variable direction u.
Our job is to find the direction of u for which the corresponding change df is largest. Since
df = Vf-dr = ¢Vf-u= ¢V [|cosf, where # is the angle between Vf and u, we see that df
is maximum if # = 0, or Vf and u are parallel. That is. the direction of Vf is the direction
in which [ increases most rapidly.

4.24 »»» (a) Consider first the force on m due to a short segment dz of the rod at a height
2 above m. This force has magnitude dF = Gmudz/r? in the direction shown in the left
picture, where r is the distance from the element dz to m. To find the total force we must
integrate this from 2 = —oo to oc. When we do this, the z components F. from points 2
and — 2 will cancel. Since the component into the page is clearly zero, we have only to worry



| ~mass =udz

side view end view

about the component in the direction of g (the unit vector in the p direction, pointing away
from the 2 axis):

5 . dz dz
df, = —Gmyi cos O = —\GT'.rn,ul,GT_—:t
where the last expression follows because cosa = p/r. Thus the net force has p component
= dx o dz Gm /2
M= —G‘:rmrpf — = —Gmy,u[ e #[ 08 1 (o
S —n0 [3 +ﬂ )" P —mi2

where the last form results from the substitution 2/p = tana. The final integral is just 2,

and we conclude that -
Fe_ rmuﬁ_ (ii)
p

(b) The unit vector p lies in the xy plane. If we denote its polar angle by ¢ as in the
right picture, then
P =Xcos¢+ ysing
where cos¢ = x/p and sin@ = y/p. Substituting into Eq. (ii), we find

2Gmu
s

F=- (Xr+¥yy+20)

where p = /22 4+ 4% It is now a straightforward matter to evaluate the components of
V x F. For instance, (V x F), = d,F. — 0. F, where | have introduced the abbreviation 9,
for @/0r and so on. Since F, = 0 and F), is independent of z, it follows that (V x F), = (.
The y component works in exactly the same way, and

(VxF),=0a.F,—0,F. =-2Gmp (y i e mﬂyp_ﬁ) : (iii)

Now, it is a simple matter to check that @,p7* = —2rp~* and likewise d,p~* = —2yp~*, so
the two terms on the right of Eq.(iii) cancel exactly. Thus all three components of V x F
are zero, and F is conservative.

(c) From Eq.(ii), we see that F is especially simple in cylindrical polar coordinates.
Specifically F, = —2G'my/p, which is independent of @ and z, while the other two compo-
nents are gero, F, = F, = 0. Sustituting into the expression inside the back cover for V x F
in cylindrical polars, we see immediately the ¥V x F = 0.



(d) The potential energy U(r) is given by the integral — [ F.dr taken from any chosen
reference point r, to the point of interest r. Since the integral is independent of path, we
can choose any convenient path. One such choice is given in cylindrical polar coordinates
as follows: Let the reference point r, be given by coordinates (p,, ¢, 2,) and r by (p, ¢, 2).
Now define the path in three stages:

1. Go from r, parallel to the z axis until you reach the desired final value z.

2. Next move in a circle of constant p and 2 until vou reach the desired final value of @.

3. Finally go radially out in the direction of g to the final value of p.

In the first two legs of this journey the foree does no work. In the final leg, F and dr point
in the p direction, and the work integral is easily written as an integral over p to give

Ulr) = - fﬂ (— QGJ‘:I’H) dp' =2Gmuln(p/p,).

P

4.25 »»» (a) Let 1 and 2 denote any two points and I', and ', be any two paths leading
from point 1 to point 2. Next let I' be the closed path that starts at point 1, goes to point
2 via I',, and then returns to point 1 tracing the path I’y backwards. Obviously

fF-n'r= F-dr—f F.dr
r Ta ry

The work integral is path-independent if and only if the right side is zero for any two paths
joining any two points 1 and 2. and the left side is zero if and only if the work integral is
zero around any closed path. Therefore the two statements are equivalent.

(b) If we accept Stokes's theorem, §. F-dr = [(V x F)fidA, then obviously ¢.F.dr =0
if V x F = 0 everywhere.

(c) The integral going around the closed path T’
can be divided into four integrals, each along one of
the straight paths labelled 1, 2, 3, and 4 in the picture.

$Fodr= ([ +_f2+j;+_f4)F-dr
Now 3
f]+ﬁi:—f;+hFJ(I.C+f‘ d.r+fﬂ+h w(z,C, z)dz X

and

=i

Y

C4e o ™
F.(z,C +¢ z)dz — Fy(z,C, 2) = f dy 2=l 4,2)
o Ay

Combining the last two results, we find that
aF,

H-I-b lf-{-c d'_F' )
hithi= [ f AT

where the final integral is a two-dimensional 1ntegra] over the whole rectangle. There is a
similar expression (without a minus sign) for _,f2+ ) | 4» and, combining these two, we conclude
that




[ (OF, OF)\ . ’
ng.dr = f (I i ) dA = f(v x F)-hdA.

4.28 x+ (a) Since E =T+ U = ymi® + jka*, it follows that #(z) = \/2/m\/ E — jka?.

(b) At the end point # = A, we know that T = 0, so E' = kA*. Substituting into the
result of part (a), we find #(x) = wy/A? — 22, where | have defined w = \/H_m From (4.58)
we find

e 1 7 dx’

- i =
The integral can be evaluated with the substitution ' = Asin@ and gives arcsin(z/A). So
t = (1/w)arcsin(z/A).

(¢) Solving for 2 we find x(t) = Asinwi. This shows that x is a sinusoidal function of ¢,
which is the definition of simple harmonic motion. In particular, z(f) repeats itself after a
time t such that wt = 27, or t = 2x/w = 2m\/m/k.

4.30 » (a) As the toy tips, the hemisphere rolls and its center O remains at a fixed height.
On the other hand the height of the CM above O changes from h — R to (h — R)cos#.
Therefore, the PE of the toy is now U(#) = mg[R + (h — R) cos d].

(b) Since dU/df = —mg(h — R)sin#, which vanishes at # = 0, we see that the upright
position is an equilibrium, as expected. Next, d?U /d6#? = —mg(h — R) cosfl = mg(R — h) at
# = 0. Thus the equilibrium is stable if and only if R > h. [If R = h, then U(f) = mgR =
const, and the equilibrium is neutral |

4.34 »» (a) The distance of the mass m below the support is lcos¢. Therefore, its
height measured up from the equilibrium position is | — lcos¢ = [(1 — cos¢@) and its PE is
U = mgl(1l — cos ¢). The total energy is £ = il,mfzﬂl)z + mgl{1 — cos ¢).

(b) The equation dE/dt = 0 reads ml*dé + mglosiné = 0 or ml%p = —mglsin ¢. That
is. Ie=T.

(c) Provided & remains small, the equation of motion is well-approximated by lo = —go,

whose solution is ¢ = A cos(wt)+ B sin(wt), where w = /g/I. This has period 7, = 27,/l/g.



4.36 »» (a) It is easy to see that h = b/tan® and H =1 — b/sinf. Thus

M m gh
i’ —— = — — —_— — 8 o]
U=—mgh—- MgH = gb (b'inﬁ' Lauﬁ') sinf?(i” m cos 1)

where, in the third expression, I dropped an uninteresting constant.

(b) As you can check, the derivative of U is dU/df# = gb(m — M cos#)/sin*0. If m > M,
this never vanishes and there are no equilibrinm points. If m = M, it vanishes at # = 0
which is impossible (unless the string is infinitely long). If m < M, there is an equilibrium
point at #, = arccos(m/M). Since cosf decreases as @ increases, the factor (m — M cosf) is
negative for # < f, and positive for # > 8,. Therefore, U(#) has a minimum at #, and the
equilibrium is stable.

4.44 »» Since F = f(r)f. the work done going radially out from 4 to C is Wye = fj Fdr =
f' r:i [fl(r)dr. The same argument applies to Wpg, so Wae = Wpp. On the other hand, on
the paths CB and AD, F is perpendicular to dr, so Weg = W,p = 0. Therefore

Wacr = Wae + Wep = Wap + Wop = Waps

4.48 » Let the initial speed of particle 1 be v, and the final speed of the composite be o'
Then, conservation of momentum says that myvy = (my + ma)v’. Therefore the initial and
final KEs are T = 1myv)? and T = 3(my + mo)v” = im0 /(my + my), and the fractional
loss of KE is

T—T’_ml(m;+m2}—m_lz_ M

T my(my +my)  my4+my

If m; < ms, almost all the initial KE is lost; if m; < m,, almost none of the initial KE is
lost.



