4.2 ** (a)

$$W = (\int_{O}^{Q} + \int_{Q}^{P}) \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} F_{x}(x,0) \, dx + \int_{0}^{1} F_{y}(1,0) \, dy = \int_{0}^{1} x^{2} \, dx + \int_{0}^{1} 2y \, dy = \frac{1}{3} + 1 = \frac{4}{3}.$$

(b) On this path $y = x^2$, so

$$W = \int_{O}^{P} F_x dx + \int_{O}^{P} F_y dy = \int_{0}^{1} x^2 dx + \int_{0}^{1} (2x^3)(2x dx) = \frac{1}{3} + \frac{4}{5} = \frac{17}{15}.$$

(c) On this path $x = t^3$ and $y = t^2$, so

$$W = \int_{O}^{P} F_x dx + \int_{O}^{P} F_y dy = \int_{0}^{1} t^6 (3t^2 dt) + \int_{0}^{1} (2t^5)(2t dt) = 3 \times \frac{1}{9} + 4 \times \frac{1}{7} = \frac{19}{21}.$$

4.4 ** (a) As in Problem 3.25, conservation of angular momentum implies that $mr^2\omega = mr_o^2\omega_o$, so $\omega = (r_o/r)^2\omega_o$.

(b) The tension force, which I must supply, is what keeps the particle in its circular path with centripetal acceleration $a_r = -\omega^2 r$. (This is where we must assume that I pull the string slowly — otherwise, $a_r = \ddot{r} - \omega^2 r$.) Thus the force which I exert is

$$F(r) = m\omega^2 r = m \left[\left(\frac{r_{\rm o}}{r}\right)^2 \omega_{\rm o} \right]^2 r = m\omega_{\rm o}^2 r_{\rm o}^4 \frac{1}{r^3}$$

where I used the result of part (a) for the second equality. The work I do is (Remember the distance I pull the string in any small displacement is -dr.)

$$W = \int_{r_0}^r F(r')(-dr') = -m\omega_o^2 r_o^4 \int_{r_0}^r \frac{dr'}{r'^3} = \frac{1}{2}m\omega_o^2 r_o^4 \left(\frac{1}{r^2} - \frac{1}{r_o^2}\right).$$

(c) The particle's KE is $T = \frac{1}{2}mv^2 = \frac{1}{2}mr^2\omega^2$. Thus, with the result of part (a) for ω ,

$$\Delta T = \frac{1}{2}m(r^2\omega^2 - r_o^2\omega_o^2) = \frac{1}{2}m\omega_o^2\left(\frac{r_o^4}{r^2} - r_o^2\right)$$

which is the same as the work done in part (b), as it has to be.

4.8 ** We'll measure the puck's position by the angle θ it subtends at the sphere's center O (measured down from the top). The puck's PE (defined as zero at the level of O) is $U(\theta) = mgR \cos \theta$, and its total energy is E = U(0) = mgR. By conservation of energy,

$$T = \frac{1}{2}mv^2 = E - U = mgR(1 - \cos\theta).$$
 (i)

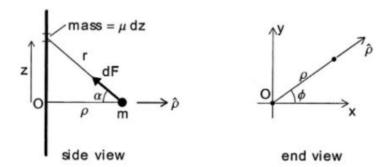
As long as the puck remains in contact with the sphere, the radial component of Newton's second law reads $N - mg \cos \theta = -mv^2/R$, where N denotes the normal force of the sphere on the puck. Substituting from Eq (i) for mv^2 we find

$$N = mq(3\cos\theta - 2).$$

As long as N is positive the puck remains on the sphere. Since the sphere cannot exert a negative normal force, once the predicted value of N becomes negative, the puck must have left the sphere. Therefore it leaves the sphere when N=0 or $\theta=\arccos(2/3)=48.2^{\circ}$ and the height below the top is R/3.

4.12 * (a)
$$\nabla f = \hat{\mathbf{x}} \, 2x + \hat{\mathbf{z}} \, 3z^2$$
. (b) $\nabla f = k \, \hat{\mathbf{y}}$. (c) $\nabla f = \hat{\mathbf{r}}$. (d) $\nabla f = -\hat{\mathbf{r}}/r^2$

- **4.18** ** (a) According to (4.35), the change in $f(\mathbf{r})$ resulting from any small displacement $d\mathbf{r}$ is $df = \nabla f \cdot d\mathbf{r}$. If, in particular, we consider any infinitesimal displacement $d\mathbf{r}$ in a surface of constant f, then df will be zero. This implies that $\nabla f \cdot d\mathbf{r} = \mathbf{0}$, that is, ∇f is perpendicular to the surface of constant f.
- (b) Consider a displacement $d\mathbf{r} = \epsilon \mathbf{u}$ with fixed magnitude ϵ but variable direction \mathbf{u} . Our job is to find the direction of \mathbf{u} for which the corresponding change df is largest. Since $df = \nabla f \cdot d\mathbf{r} = \epsilon \nabla f \cdot \mathbf{u} = \epsilon |\nabla f| \cos \theta$, where θ is the angle between ∇f and \mathbf{u} , we see that df is maximum if $\theta = 0$, or ∇f and \mathbf{u} are parallel. That is, the direction of ∇f is the direction in which f increases most rapidly.
- **4.24** *** (a) Consider first the force on m due to a short segment dz of the rod at a height z above m. This force has magnitude $dF = Gm\mu dz/r^2$ in the direction shown in the left picture, where r is the distance from the element dz to m. To find the total force we must integrate this from $z = -\infty$ to ∞ . When we do this, the z components F_z from points z and -z will cancel. Since the component into the page is clearly zero, we have only to worry



about the component in the direction of $\hat{\rho}$ (the unit vector in the ρ direction, pointing away from the z axis):

$$dF_{\rho}=-Gm\mu\cos\alpha\frac{dz}{r^{2}}=-Gm\mu\rho\frac{dz}{r^{3}}$$

where the last expression follows because $\cos \alpha = \rho/r$. Thus the net force has ρ component

$$F_{\rho} = -Gm\mu\rho \int_{-\infty}^{\infty} \frac{dz}{r^{3}} = -Gm\mu\rho \int_{-\infty}^{\infty} \frac{dz}{(z^{2} + \rho^{2})^{3/2}} = -\frac{Gm\mu}{\rho} \int_{-\pi/2}^{\pi/2} \cos\alpha \, d\alpha$$

where the last form results from the substitution $z/\rho = \tan \alpha$. The final integral is just 2, and we conclude that

$$\mathbf{F} = -\frac{2Gm\mu}{\rho}\hat{\boldsymbol{\rho}}.$$
 (ii)

(b) The unit vector $\hat{\rho}$ lies in the xy plane. If we denote its polar angle by ϕ as in the right picture, then

$$\hat{\boldsymbol{\rho}} = \hat{\mathbf{x}} \cos \phi + \hat{\mathbf{y}} \sin \phi$$

where $\cos \phi = x/\rho$ and $\sin \phi = y/\rho$. Substituting into Eq. (ii), we find

$$\mathbf{F} = -\frac{2Gm\mu}{\rho^2} (\hat{\mathbf{x}} x + \hat{\mathbf{y}} y + \hat{\mathbf{z}} 0)$$

where $\rho = \sqrt{x^2 + y^2}$. It is now a straightforward matter to evaluate the components of $\nabla \times \mathbf{F}$. For instance, $(\nabla \times \mathbf{F})_x = \partial_y F_z - \partial_z F_y$ where I have introduced the abbreviation ∂_x for $\partial/\partial x$ and so on. Since $F_z = 0$ and F_y is independent of z, it follows that $(\nabla \times \mathbf{F})_x = 0$. The y component works in exactly the same way, and

$$(\nabla \times \mathbf{F})_z = \partial_x F_y - \partial_y F_x = -2Gm\mu \left(y \partial_x \rho^{-2} - x \partial_y \rho^{-2}\right).$$
 (iii)

Now, it is a simple matter to check that $\partial_x \rho^{-2} = -2x\rho^{-4}$ and likewise $\partial_y \rho^{-2} = -2y\rho^{-4}$, so the two terms on the right of Eq.(iii) cancel exactly. Thus all three components of $\nabla \times \mathbf{F}$ are zero, and \mathbf{F} is conservative.

(c) From Eq.(ii), we see that \mathbf{F} is especially simple in cylindrical polar coordinates. Specifically $F_{\rho} = -2Gm\mu/\rho$, which is independent of ϕ and z, while the other two components are zero, $F_{\phi} = F_z = 0$. Sustituting into the expression inside the back cover for $\nabla \times \mathbf{F}$ in cylindrical polars, we see immediately the $\nabla \times \mathbf{F} = 0$.

- (d) The potential energy $U(\mathbf{r})$ is given by the integral $-\int \mathbf{F} \cdot d\mathbf{r}$ taken from any chosen reference point \mathbf{r}_o to the point of interest \mathbf{r} . Since the integral is independent of path, we can choose any convenient path. One such choice is given in cylindrical polar coordinates as follows: Let the reference point \mathbf{r}_o be given by coordinates (ρ_o, ϕ_o, z_o) and \mathbf{r} by (ρ, ϕ, z) . Now define the path in three stages:
 - Go from r_o parallel to the z axis until you reach the desired final value z.
 - Next move in a circle of constant ρ and z until you reach the desired final value of φ.
 - 3. Finally go radially out in the direction of $\hat{\rho}$ to the final value of ρ .

In the first two legs of this journey the force does no work. In the final leg, \mathbf{F} and $d\mathbf{r}$ point in the $\hat{\boldsymbol{\rho}}$ direction, and the work integral is easily written as an integral over $\boldsymbol{\rho}$ to give

$$U(\mathbf{r}) = -\int_{\rho_0}^{\rho} \left(-\frac{2Gm\mu}{\rho'}\right) d\rho' = 2Gm\mu \ln(\rho/\rho_0).$$

4.25 *** (a) Let 1 and 2 denote any two points and Γ_a and Γ_b be any two paths leading from point 1 to point 2. Next let Γ be the closed path that starts at point 1, goes to point 2 via Γ_a , and then returns to point 1 tracing the path Γ_b backwards. Obviously

$$\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\Gamma_a} \mathbf{F} \cdot d\mathbf{r} - \int_{\Gamma_b} \mathbf{F} \cdot d\mathbf{r}$$

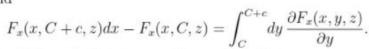
The work integral is path-independent if and only if the right side is zero for any two paths joining any two points 1 and 2, and the left side is zero if and only if the work integral is zero around any closed path. Therefore the two statements are equivalent.

- (b) If we accept Stokes's theorem, $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \int (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} dA$, then obviously $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = 0$ if $\nabla \times \mathbf{F} = 0$ everywhere.
- (c) The integral going around the closed path Γ can be divided into four integrals, each along one of the straight paths labelled 1, 2, 3, and 4 in the picture.

$$\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \left(\int_{1} + \int_{2} + \int_{3} + \int_{4} \right) \mathbf{F} \cdot d\mathbf{r}$$

Now

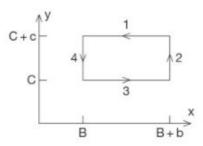
$$\int_{1} + \int_{3} = -\int_{B}^{B+b} F_{x}(x, C+c, z) dx + \int_{B}^{B+b} F_{x}(x, C, z) dx$$
and



Combining the last two results, we find that

$$\int_{1} + \int_{3} = -\int_{B}^{B+b} dx \int_{C}^{C+c} dy \frac{\partial F_{x}(x, y, z)}{\partial y} = -\int \frac{\partial F_{x}}{\partial y} dA$$

where the final integral is a two-dimensional integral over the whole rectangle. There is a similar expression (without a minus sign) for $\int_2 + \int_4$, and, combining these two, we conclude that



$$\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \int \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) dA = \int (\mathbf{\nabla} \times \mathbf{F}) \cdot \hat{\mathbf{n}} dA.$$

- **4.28** ** (a) Since $E = T + U = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$, it follows that $\dot{x}(x) = \sqrt{2/m}\sqrt{E \frac{1}{2}kx^2}$.
- (b) At the end point x = A, we know that T = 0, so $E = \frac{1}{2}kA^2$. Substituting into the result of part (a), we find $\dot{x}(x) = \omega\sqrt{A^2 x^2}$, where I have defined $\omega = \sqrt{k/m}$. From (4.58) we find

 $t = \int_0^x \frac{dx'}{\dot{x}(x')} = \frac{1}{\omega} \int_0^x \frac{dx'}{\sqrt{A^2 - x'^2}}.$

The integral can be evaluated with the substitution $x' = A \sin \theta$ and gives $\arcsin(x/A)$. So $t = (1/\omega) \arcsin(x/A)$.

- (c) Solving for x we find $x(t) = A \sin \omega t$. This shows that x is a sinusoidal function of t, which is the definition of simple harmonic motion. In particular, x(t) repeats itself after a time t such that $\omega t = 2\pi$, or $t = 2\pi/\omega = 2\pi\sqrt{m/k}$.
- **4.30** \star (a) As the toy tips, the hemisphere rolls and its center O remains at a fixed height. On the other hand the height of the CM above O changes from h R to $(h R)\cos\theta$. Therefore, the PE of the toy is now $U(\theta) = mg[R + (h R)\cos\theta]$.
- (b) Since $dU/d\theta = -mg(h-R)\sin\theta$, which vanishes at $\theta = 0$, we see that the upright position is an equilibrium, as expected. Next, $d^2U/d\theta^2 = -mg(h-R)\cos\theta = mg(R-h)$ at $\theta = 0$. Thus the equilibrium is stable if and only if R > h. [If R = h, then $U(\theta) = mgR =$ const, and the equilibrium is neutral.]
- **4.34** ** (a) The distance of the mass m below the support is $l\cos\phi$. Therefore, its height measured up from the equilibrium position is $l-l\cos\phi=l(1-\cos\phi)$ and its PE is $U=mgl(1-\cos\phi)$. The total energy is $E=\frac{1}{2}ml^2\dot{\phi}^2+mgl(1-\cos\phi)$.
- (b) The equation dE/dt = 0 reads $ml^2\dot{\phi}\ddot{\phi} + mgl\dot{\phi}\sin\phi = 0$ or $ml^2\ddot{\phi} = -mgl\sin\phi$. That is, $I\alpha = \Gamma$.
- (c) Provided ϕ remains small, the equation of motion is well-approximated by $l\ddot{\phi} = -g\phi$, whose solution is $\phi = A\cos(\omega t) + B\sin(\omega t)$, where $\omega = \sqrt{g/l}$. This has period $\tau_{\rm o} = 2\pi\sqrt{l/g}$.

4.36 ** (a) It is easy to see that $h = b/\tan\theta$ and $H = l - b/\sin\theta$. Thus

$$U = -mgh - MgH = gb\left(\frac{M}{\sin\theta} - \frac{m}{\tan\theta}\right) = \frac{gb}{\sin\theta}(M - m\cos\theta)$$

where, in the third expression, I dropped an uninteresting constant.

- (b) As you can check, the derivative of U is $dU/d\theta = gb(m M\cos\theta)/\sin^2\theta$. If m > M, this never vanishes and there are no equilibrium points. If m = M, it vanishes at $\theta = 0$ which is impossible (unless the string is infinitely long). If m < M, there is an equilibrium point at $\theta_o = \arccos(m/M)$. Since $\cos\theta$ decreases as θ increases, the factor $(m M\cos\theta)$ is negative for $\theta < \theta_o$ and positive for $\theta > \theta_o$. Therefore, $U(\theta)$ has a minimum at θ_o and the equilibrium is stable.
- **4.44** ★★ Since $\mathbf{F} = f(r)\hat{\mathbf{r}}$, the work done going radially out from A to C is $W_{AC} = \int_A^C \mathbf{F} d\mathbf{r} = \int_{r_A}^{r_B} f(r) dr$. The same argument applies to W_{DB} , so $W_{AC} = W_{DB}$. On the other hand, on the paths CB and AD, \mathbf{F} is perpendicular to $d\mathbf{r}$, so $W_{CB} = W_{AD} = 0$. Therefore

$$W_{ACB} = W_{AC} + W_{CB} = W_{AD} + W_{DB} = W_{ADB}$$

4.48 ★ Let the initial speed of particle 1 be v_1 and the final speed of the composite be v'. Then, conservation of momentum says that $m_1v_1 = (m_1 + m_2)v'$. Therefore the initial and final KEs are $T = \frac{1}{2}m_1v_1^2$ and $T' = \frac{1}{2}(m_1 + m_2)v'^2 = \frac{1}{2}m_1^2v_1^2/(m_1 + m_2)$, and the fractional loss of KE is

$$\frac{T-T'}{T} = \frac{m_1(m_1+m_2)-m_1^{\ 2}}{m_1(m_1+m_2)} = \frac{m_2}{m_1+m_2} \ .$$

If $m_1 \ll m_2$, almost all the initial KE is lost; if $m_2 \ll m_1$, almost none of the initial KE is lost.